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INHIBITION OF TGFβ SIGNALING AND ITS IMPLICATIONS 
IN ANTICANCER TREATMENTS
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The transforming growth factor-β (TGFβ) is a potent regulator of tumorigenesis. In cancer, two distinctive behaviors of TGFβ 
have been reported as a tumor suppressor at early stage of the disease, and as a tumor promoter at later stages. The past decades, 
the dualistic role of TGFβ has garnered a lot of attention. As a result, cancer researchers’ has been tasked to elucidate how TGFβ 
signaling may lead to metastatic dissemination, how to tackle carcinogenesis and which therapeutic strategies should be adopted. 
Consequently, TGFβ signaling pathways have been considered as appropriate targets for cancer therapy. The TGFβ therapeutic 
strategies have emerged at three levels: ligand, ligand-receptor interaction and intracellular signaling level. Promising inhibitors 
of TGFβ signaling have entered clinical trials and shown encouraging results. Here we review the three strategies of TGFβ signaling 
inhibition and theirs applications in treatment of cancer.
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The TGFβ is a potent cytokine endowed with re­
markable functionalities allowing it to perform multiple 
tasks. Among these tasks, there are regulation of cell 
proliferation, differentiation, and apoptosis. The cell 
type and the cell environment may influence the 
function of the cytokine, enabling it to control mul­
titudinous processes either normal or pathological. 
As examples of physiological events related to TGFβ 
signaling are embryogenesis, wound healing and tis­
sue homeostasis. Regarding pathological disorders, 
such as cancer, arteriosclerosis, fibrosis and Mar­
fan’s syndrome, compiling evidences have shown that 
loss of control of the TGFβ signaling is associated with 
these conditions. In the neoplastic transformation, 
TGFβ plays two conflicting roles of a tumor suppressor 
and a tumor promoter. The inhibition of TGFβ signa­
ling pathways may be achieved at three levels in the 
TGFβ signaling pathways. The first strategy is to target 
the TGFβ ligand. The second strategy is to affect the 
interaction between the TGFβ ligand and the TGFβ 
receptors. Finally, the third strategy focuses on the 
receptor-mediated signaling cascade. There is a con­
siderable diversity of inhibitors designed to approach 
each of the three levels. These inhibitors have already 
shown different beneficial aspects in preclinical and 
clinical studies.

TGFβ: STRANGE CASE OF “TGFβ” 
DR JEKYLL OR MR HYDE?
Carried out by Robert W. Holley in the early 70s, 

the initial study leading to the discovery of TGFβ and 
its naming as a transforming growth factor were based 
on its ability to induce malignant behavior of normal 
fibroblasts. This brought the idea that TGFβ might 
be a key factor in transformation of cells [1, 2]. Mean­
while, other experiments indicated a conflicting func­
tion of TGFβ on cells, that of a tumor suppressor [3]. 
Today, it is well established that conceded roles to the 
cytokine are cancer stage dependent [3, 4]. In the 
early stage of cancer development, TGFβ can sup­
press tumor growth, whereas in the late-stage it can 
take on role of a tumor promoter, favoring spreading 
of metastasis [5]. TGFβ is assumed to arbitrate a broad 
range of physiological processes e.g. wound healing, 
proliferation, epithelial homeostasis, embryogenesis 
and apoptosis but also pathological processes such 
as Marfan’s syndrome, fibrosis, carcinogenesis in­
cluding angiogenesis and epithelial-to-mesenchymal 
transition (EMT) [6–8]. Even three decades after its 
discovery, it is a difficult task to ascribe one single role 
to the TGFβ in the case of carcinogenesis. The “whimsi­
cal” behavior of this cytokine leads to the conclusion 
that it might be both, a kind of “Guardian angel” by its 
ability to inhibit tumor proliferation, but nevertheless 
a kind of “Devil” by its aptitude to enhance metastasis 
spreading, and for that reason, would deserve the dual 
title of “Dr Jekyll/Mr Hyde” [9, 10].

TGFβ SIGNALING:  
“TO SMAD, OR NOT TO SMAD?” [11]
The following model for TGFβ signaling pathway 

trough Smad proteins has been suggested in several 
reports (Fig. 1) [12–17]. 

The signal is triggered through binding of the ma­
ture TGFβ ligand to the extracellular domain of type 
II TGFβ receptor (TβR-II) or to the accessory receptor, 
type III TGFβ receptor (TβR-III) which transfers TGFβ 
to TβR-II. Following the transfer of the cytokine to TβR-
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II, the constitutively active receptor TβR-II recruits and 
phosphorylates the signaling type I TGFβ receptor 
(TβR-I) [18]. The TβR-I acts downstream of the type II, 
and determines the specificity of intracellular signals 
by phosphorylating a subset of transcriptional cyto­
plasmic factors (TF), major linchpin of the signaling 
pathway Smad2 and Smad3. Also called R-Smads 
(receptor-regulated or activated Smads), for the reason 
that Smad2/3 protein activation is under the control 
of the receptor TβR-I [13]. Several phosphoisoforms 
of the R-Smads have been identified as a result of TGFβ 
and Ras/MAPK pathways activation [19, 20]. The 
phosphorylation of these first intracellular mediators 
stimulates their interactions with Smad4 (Co-Smad), 
a co-mediator and other protein partners e.g. SARA 
(Smad anchor for receptor activation anchorage), 
Dab2, Endofin, Axin, etc. [10, 21]. Once assembled, 
the complex Smad4-Smad2/3 shuttles to the nucleus 
where it may exert distinct transcriptional control [22, 
23]. Besides this Smad-dependent pathway which 
is doubtless the most-well known TGFβ signaling path­
way, other pathways have been identified, clustered and 
termed as Smad-independent pathways [24, 25]. These 
other signaling cascades can be activated by TGFβ, and 
in such a way can orchestrate the transcription of target 
genes. Among them are described various branches 
of the MAPK, Rho-like GTPase and PI3K/AKT pathways 
[24–28]. It is broadly accepted that during carcinogene­
sis, the Smad-dependent pathway correlates with the 

anti-proliferative or tumor suppressor functions of TGFβ, 
and that the Smad-independent pathways are involved 
in TGFβ pro-malignant functions [29].

THREE APPROACHES TO INHIBIT TGFβ 
SIGNALING
Taking account of TGFβ involvement in carcino­

genesis (tumor suppression and tumor promotion), 
the targeting of TGFβ signaling pathway for thera­
peutics purposes was an ineluctable choice. By dint 
of intensive works, over fifteen years, the therapeutic 
strategies to disrupt TGFβ signaling have emerged 
at three levels: ligand, receptor-ligand interaction and 
intracellular signal transduction (Fig. 2). Several inhibi­
tors have entered clinical trials, from phase I to III. The 
Table 1 summarized the current knowledge on thera­
peutic strategies to impede TGFβ signaling. 

Intervention on the ligand level
The signaling pathway’s first component is the 

ligand. Therefore an interest in targeting the tran­
scriptional products of TGFβ-coding genes in order 
to restrain the synthesis of TGFβ has been applied. The 
technique called Gene Silencing by RNA Interference 
(RNAi) allows regulation of the gene expression. The 
sRNAi technology is based on two types of small mol­
ecules of RNA: the micro interfering RNA (miRNA) and 
the short interfering RNA (siRNA) [30]. These small 
molecules act by binding complementary sequences 
on specific mRNAs, therefore preventing translation 
and in that way silencing TGFβ genes. Binding of an­
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Fig. 1. TGFβ Smad and non-Smad signaling pathways from initiation to nucleus. (a) Signal initiation. After the secretion of TGFβ, the 
active cytokine can bind TβR-II or the accessory receptor TβR-III which presents it to TβR-II. TGFβ binding to TβR-II leads to bridg­
ing of TβR-I into the complex, and allows TβR-II to phosphorylate TβR-I. (b) Smad-dependent pathway. The R-Smads (Smad2 and 
Smad3) are activated by TβR-I. However their recruitment can be eased by auxiliary proteins, e.g. SARA. These activated R-Smads 
complex a Co-Smad (Smad4). Finally, the complex is imported into the nucleus, where with the help of other co-operators it regulates 
expression of targeted genes. (c) Smad-independent pathway. TGFβ can regulate expression of a wide range of genes by inducing 
other signaling cascade independently of the Smad-dependent pathway, such as shown MAPK
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tisense oligonucleotides (ASO) to RNAs and targeting 
TGFβ mRNA made silencing of TGFβ gene possible [31, 
32]. The trabedersen, also termed AP-12009, from 
Antisense Pharma is an ASO responsible for silen­
cing of TGFβ2 gene [29]. In recurrent and refractory 
high-grade glioma patients, promising results have 
already been obtained and led to the clinical trials 
phase III [33, 34]. However, in spite of a high specificity, 
trabedersen administration remains an issue. In high 
grade glioma patients a neurosurgical intervention 
is required to set-up a relatively complicated drug 
delivery system. This drug delivery system includes 
a pump placed outside the body which is connected 
to an internal catheter flowing to the brain [35–37]. 
Currently, Antisense Pharma is performing phases 
I/II clinical trials in pancreatic neoplasms, melanoma 
and colorectal neoplasms using intravenous delivery 
that already show encouraging efficacy [38]. By neu­
tralizing the TGFβ2 mRNA produced by tumor cells, 
the Belagenpumatucel-L or LucanixTM from NovaRx 
was expected to restore tumor antigen recognition 
by immune effector cells i.e. T-cells [39]. In patients 
with non-small cell lung cancer, results from a phase 
II study suggest that the number of circulating tumor 

cells at baseline appears to correlate with the overall 
survival. Such results highlight that further explora­
tions remain needed [40, 41]. Although, the published 
reports are not enough clear regarding the adverse 
effects, this lack of information may have a conside­
rable impact on the future safety status of neutralizing 
RNAs as drugs [36].

Intervention on the ligand-receptor interac-
tion level

Drugs of the second level target interaction be­
tween the ligand and the specific receptor. To date 
intervention on the ligand-receptor level encompasses 
three categories of compounds: monoclonal antibo­
dies (mAbs), natural TGFβ inhibitors and soluble TGFβ 
receptors (fusion constructs). Here we focus on the 
mAbs due to the broad use in clinic of antibodies 
as drugs targeting different signaling receptors. The 
application of mAbs as a therapeutic end (i.e. im­
munotherapy) for cancer can be explained by their 
high specificity [42–44]. Several investigators have 
demonstrated in cancer mice models that a neu­
tralization of the three isoforms of TGFβ circulating 
in the bloodstream using several mAbs e.g. 1D11 and 
2G7 affected the tumor growth [6]. The mAbs list 
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Fig. 2. Current strategies to impede TGFβ signaling. (a) Direct or indirect inhibition of TGFβ secretion. The first measure consists 
to prevent the secretion of TGFβ directly by action on transcript products using mAbs or ASOs or via indirect routes by decreasing 
the secretion rate of the cytokine. (b) Inhibition of TGFβ-receptor binding. Another therapeutic line lies in the neutralization of the 
secreted cytokine by mAbs, soluble receptors or natural TGFβ inhibitors, and therefore blocking the ligand-receptor binding. (c) 
Inhibition of TGFβ receptor activation. Antagonism of the transduction signal through hampering of TβR-I may be achieved by in­
hibitors interfering with the ATP-binding pocket or the Smad-binding pocket of the kinase. (d) Inhibition of Smad activation. Finally 
to stymie the progression of TGFβ signaling on the transduction level one may target Smad2/3 directly. Strategies (a), (b) and (c) 
are currently being explored, and discussed in the text
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targeting TGFβ includes GC1008, CAT-152 and CAT-
192 [45–47]. All three Abs are up to date the most 
developed antibodies in clinical trials [29, 36, 48]. The 
pilot study and the phase II studies carried out on pa­
tients with advanced malignant melanoma or renal 
cell carcinoma have shown a reasonable tolerance 
vis-à-vis GC1008 and a neutralization of TGFβ, hol­
ding promise of a novel cancer therapeutic agent [45]. 
However several adverse effects have been noticed, 
such as fatigue, headache, epistaxis, gingival blee­
ding, skin rash [6, 45]. Nonetheless, a phase II protocol 
expansion study is recruiting patients with metastatic 
malignant melanoma. This protocol allows monitor­
ing of the GC1008 effects in blood samples from pa­
tients. A phase II study of patients with breast cancer 
is planned with GC1008 [6]. The CAT-192 or Meteli­
mumab® and the CAT-152 or Lerdelimumab® are hu­
man IgG4 mAbs directed against TGFβ1 and TGFβ2, 
respectively. Early clinical studies have suggested that 
Metelimumab® was safe and well tolerated, with a long 
half-life and has completed phase I/II studies with 
patients with cutaneous systemic sclerosis. No trials 
in cancer have yet been initiated [49]. It is important 

to bear in mind that the antibodies must surpass sub­
stantial obstacles to reach the tumor mass [36, 50]. 
Among them, the physical barrier including vascular 
endothelium, stromal barriers, high interstitial pres­
sure and epithelial barriers may explain in part why 
the therapeutic antibodies have a moderated success 
in treatment of cancer as compared to fibrotic disor­
ders [36, 44, 50]. 

Intervention on the intracellular signaling level
The transforming factor receptors (TβRs) are the 

gateways of the intracellular signaling. Therefore, 
drugs blocking TGFβ receptors intracellular activity 
have been developed, thus constituting the third group 
of inhibitors. Most of them are small molecule inhibitors 
targeting the kinase of TβRs. However, others inhibi­
tors target Smads interaction with TβR, using peptide 
aptamers to Smad (Table 1). This section of our report 
focuses on the inhibitors targeting the TβRs. Among 
these inhibitors there are two categories; the small 
and the large molecules. The currently developed 
inhibitors may have an imidazole scaffold, such as SB-
431542 and SB-505124, or a pyrazole scaffold such 
as LY-580276 [36, 48]. Most of these inhibitors are 

Table. Overview of therapeutic TGFβ signaling inhibitors used in pre-clinical and clinical studies. (A) Direct or indirect inhibition of TGFβ secretion. (B) In-
hibition of TGFβ/receptor binding. (C) Inhibition of TGFβ receptor activation. (D) Inhibition of Smad activation

Target Generic name Status Application References
(A) TGFβ mRNA AP-15012 discovery oncology 29

TGFβl mRNA AP-11014 adv. preclinical oncology 58
TGFβ2 mRNA AP-12009 (Trabedersen) III recruiting oncology 33, 34, NCT00761280

TGFβ secretion Tranilast preclinical various 59, 60–62
TGFβ2 secretion Bevacizumab® (Avastin) II recruiting various 63, NCT00121134   

NCT00733408
TGFβ2 Glionix™ II–III initiated oncology 64, 65

TGFβ2 secretion Lucanix® (Belagenpumatucel-L) III recruiting oncology 40, 41, NCT00676507
(Β) TGFβl Metelimumab® (CAT-192) II discontinued scleroderma 47, 49

TGFβ2/3 Lerdelimumab® (CAT-152/Trabio) III discontinued various 46, 49, 66
Pan TGFβ Fresolimumab® (GC-1008) I various 45/NCT01284322   

NCTO1401062
Pan TGFβ SR-2F preclinical oncology 67
Pan TGFβ 1D11 preclinical oncology 36
Pan TGFβ 2G7 preclinical oncology 68–70

(C) TβR-I A-83-01 preclinical oncology 71
TβR-I GW6604 preclinical fibrosis 72, 73
TβR-I IN-1130 preclinical fibrosis 74
TβR-I Κi26894 preclinical oncology 75
TβR-I LY2157299 I/II oncology 76, NCT01220271   

NCT01246986   
NCT01373164

TβR-I LY364947 (HTS-466284) preclinical various 36, 77
TβR-I LY550410 preclinical various 48
TβR-I L Y5 73636-sodium (Tasisulam) I/II/III suspended oncology 78, 79
TβR-I LY580276 preclinical various 48
TβR-I NPC-30345 preclinical various 80, 81
TβR-I SB-431542 preclinical oncology 51, 52
TβR-I SB-505124 preclinical various 53
TβR-I SD-093 preclinical oncology 81, 82
TβR-I SD-208 preclinical various 82, 83
TβR-I Sml6 preclinical oncology 84
TβR-I SM305 preclinical fibrosis 85
TβR-I SX-007 preclinical oncology 86
TβR-I Antp-Sm2A preclinical oncology 57

TβR-I /II LY2109761 preclinical oncology 87
P144 (Disitertide) preclinical/II various 88, 89
P17 preclinical various 88, 90

TβR-III sRIII preclinical oncology 91, 92
(D) Smads

Smads 
Smads 

Smad2/3 
Smad3

Trx-CBP

Trx-FoxHlb 
Trx-Lefl 
Trx-SARA 
SiS3

preclinical
discontinued

preclinical
preclinical
preclinical
preclinical

oncology

oncology 
oncology 
oncology 
fibrosis

93

93 
93 
94 
95

Abbreviations: adv. — advanced, NCT — Clinical Trial Registry Numbers. Source: ClinicalTrials.gov
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directed towards TβR-I kinase catalytic ATP-binding 
site [48]. Two representative candidates are being 
developed by GlaxoSmithKline, e.g. SB-431542 and 
SB-505124. Both aim to fully abrogate or strongly 
down-regulate the TβR-I mediated signaling cascade. 
These imidazole-based compounds have already 
shown remarkable effects at nanomolar concentra­
tions, comprising inhibition of the TGFβ-induced Smad 
phosphorylation, as well as inhibition of a reporter gene 
[51–53]. Finally, the TβR-I blockade has shown effects 
on cellular responses such as the cell cycle arrest and 
EMT of mammary epithelial cells in vitro [6, 51]. In con­
trast to its analog (i.e. SB-431542), SB-505124 has 
been revealed to be three to five times more potent 
[53]. However it has been shown that these inhibitors 
may not be specific to TβR-I. Fig. 3 shows a proteomics 
screen to evaluate the specificity of SB-431542. This 
screen detected a number of phosphorylated proteins 
which were affected by the drug. The assay was de­
signed to detect predominantly auto-phosphorylated 
kinases. Detection of multiple targets of the drug 
underscores importance of the unbiased evaluation 
specificity of the drug. The lack of high specificity 
could be explained by the inherent analogous structure 
shared by several kinases on their ATP-binding pocket, 
e.g. p38, bringing Lahn et al to voice the concern that 
such off-target inhibition might be liable to unexpected 
toxicity [36]. Finally, even if such molecules present 
the particularly advantages of an oral administration 
and a high selectivity, they remain nonetheless not 
enough specific and should be carefully monitored 
in future clinical trials [54–56]. This is in view of certain 
cases of resistance to the drug, or side-effects such 
as cardiac conditions reported in the literature [55, 56]. 

Whilst some researchers have focused in recent 
years to create inhibitors targeting the ATP-binding 
site, another approach to target the kinase on the 

substrate-biding site has been reported [57]. This 
novel strategy aims to inhibit signaling by blocking the 
substrate-binding site of the TβR-I kinase with peptides 
mimicking the Smad2. This new class of inhibitors acts 
as “decoys” which once occupying the Smad2-binding 
pocket, prevent Smad2 phosphorylation, and hence its 
activation. This idea should by definition allow a high 
specificity that some ATP-mimicking inhibitors do not 
offer. So far, only one group has produced and investi­
gated the effects of such compounds. The results have 
shown that this kind of compounds can indeed disturb 
TGFβ signaling by blockade of TβR-I in vivo and in vitro, 
in Mv1Lu cells. On top of this, there have been shown 
that those new inhibitors affected TGFβ1-dependent 
phosphorylation of endogenous Smad2, as well as gene 
stimulation. Finally, these pseudo-substrates have 
shown higher efficiency vis-à-vis the TβR-I kinase than 
to kinases of other type I receptor of TGFβ and BMP 
family [57]. Nowadays, investigations on normal and 
cancer celllines are ongoing. In view of the encouraging 
results, it is clear that development of pseudo-substrate 
inhibitors may lead to new therapeutic strategies to im­
pede TGFβ signaling.

CONCLUSION
As metastasis dissemination remains the major 

cause leading to death of cancer patients, significant 
efforts have been undertaken over the years to tackle 
cancer by blockade or at least by decreasing develop­
ment of the metastasis. To face this challenge, the 
inhibition of TGFβ signaling appears as a therapeutic 
strategy. This strategy has been approached at three 
levels: ligand, receptor-ligand binding and intracellular 
signaling levels. Among them, the ASOs and the mAbs 
technologies are the most advanced. Yet, the inhibi­
tors likely to experience a fast growth will undoubtedly 
be the small-molecules drugs. Novel type of inhibi­

a b

Fig. 3. Screen for specificity of a kinase inhibitor. a — without inhibitor; b — +SB-431542. ATP-binding site interfering inhibitor 
SB-431542 was added to cell extract (right 2D gel) or not (left 2D gel), in vitro kinase reaction was performed under conditions 
promoting autophosphorylation of kinases. Proteins were separated, and 32P incorporation was detected after exposure in a Phos­
phorImagerTM. Arrows show migration positions of proteins which were affected by addition of SB-431542
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tors, e.g. substrate-mimicking drugs, requires further 
developmental efforts. However, already now we have 
examples of successful application of inhibition of TGFβ 
signaling for the benefit of cancer patients. This ensures 
that TGFβ inhibitors came into anticancer treatment 
to stay. The inhibitors have been tested in a number 
of assays, and have shown their efficiency. However, 
developmental work requires much more. Taking into 
account potential benefit for patients and results of clini­
cal trials with other types of TGFβ signaling inhibitors, 
there is a strong support to continue development of the 
substrate-mimicking inhibitors. 
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